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ABSTRACT  

The National Aeronautics and Space Administration (NASA) and National Oceanic and  

Atmospheric Administration (NOAA) have a long and successful history of weather radar  

research. The NOAA ground-based radars – WSR-88D network – provide nationwide  

precipitation observations and estimates with advanced polarimetric capability. As a  

counterpart, the NASA-JAXA space-borne radar – the GPM/DPR (Global Precipitation  

Measurement Dual-frequency Precipitation Radar) – has global coverage and higher vertical  

resolution than ground-based radars. While significant advances from both NOAA’s WSR- 

88D network and NASA-JAXA’s spaceborne radar DPR have been made, no systematic  

comparisons between the WSR-88D network and the DPR have been done. This study for the  

first time generates nationwide comprehensive comparisons at 136 WSR-88D radar sites  

from 2014 to 2020. Systematic differences in reflectivity are found, with ground radar  

reflectivity on average 2.4 dB smaller than that of the DPR (DPR Version 6). This research  

found the discrepancies between WSR-88D and DPR arise from different calibration  

standards, signal attenuation correction, and differences in the ground and space-borne  

scattering volumes. The recently updated DPR Version 7 product improves rain detection and  

attenuation corrections, effectively reducing the overall average WSR-88D and DPR  

reflectivity differences to 1.0 dB. The goal of this study is to examine the systematic  

differences of radar reflectivity between the NOAA WSR-88D network and the NASA- 

JAXA spaceborne radar DPR, and to draw attention to radar-application users in recognizing  

their differences. Further investigation into understanding and alleviating the systematic bias  

between the two platforms is needed.   

CAPSULE (BAMS ONLY)  

Consistently smaller radar reflectivities are found in NOAA’s ground-based radars,  

compared to NASA-JAXA’s spaceborne radar after adjustment. The difference is reduced  

when Version 7 DPR product is used.  
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Weather radars have deepened our understanding of precipitation microphysics, improved 

quantitative precipitation estimates, and severe weather forecasts and warnings (Crum and 

Alberty, 1993; Hong and Gourley, 2018; Weber et al., 2021; Zhang et al., 2016). In the 

United States, the well-known Weather Surveillance Radar – 1988 Doppler (WSR-88D) 

network, operated by the National Oceanic and Atmospheric Administration (NOAA), 

provides a quasi-continental coverage of high-quality observations of weather events (Crum 

and Alberty, 1993). Since 2013, all WSR-88D radars have been upgraded to include 

polarimetric capabilities, leading to an improved understanding of storm microphysics, the 

development of polarimetric hydrometeor classification algorithms, and enhanced 

precipitation retrieval techniques (Ryzhkov and Zrnic, 1998; Zhang et al., 2001). However, 

ground-based radars (denoted as GR herein) suffer from beam blockages, particularly in 

mountainous regions, that can impede real-time observations of severe weather events 

(Gabella et al., 2006, Wen et al., 2013). Furthermore, the vertical resolution of operational 

GRs is degraded by the limited number of elevation angle scans that comprise a radar 

volume, as well as beam broadening at distant ranges from the radar (Cao et al., 2013, Wen et 

al., 2013, 2016). In contrast, space-borne radars (SR), such as the CloudSat and the 

GPM/DPR (Global Precipitation Measures/Dual-frequency Precipitation Radar), provide 

datasets that are not affected by the same problems that often impact GR data quality. For 

example, SRs have a less restricted view of the upper rain column and provide enhanced 

vertical resolutions when compared to GRs. SRs are also well suited to fill the voids where 

GR coverage is either missing or poor, such as over the ocean or remote areas on land 

(Battaglia et al., 2019). On the other hand, the temporal sampling rate provided by a single 

SR for a given location is quite poor when compared to that provided by a GR. Furthermore, 

the horizontal resolution provided by a SR is limited by the antenna size while the swath 

width is restricted by considerations of surface clutter and sampling frequency. Given these 

different advantages and disadvantages, it is clear that the synergetic use of GRs and SR 

provides a promising opportunity to probe precipitation microphysics (Liao et al., 2005, 

2011, Wen et al., 2013). 

After the success of the Tropical Rainfall Measurement Mission (TRMM) in 1997, the 

GPM Core Observatory (CO) - a collaborative effort by The National Aeronautics and Space 

Administration (NASA) and Japan Aerospace Exploration Agency (JAXA) – was launched 

in 2014 with the broad goal of enhancing predictive tools for weather and climate (Hou et al., 

2014; Li et al., 2020, 2021, 2022; Foufoula-Georgiou et al., 2020; Wen et al., 2016). The  
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GPM CO carried two advanced instruments: the Microwave imager (GMI) and the Dual- 

frequency Precipitation Radar (DPR), operating at Ku (13 GHz) and Ka (35 GHz) band, and  

had a one goal of extending the measurement range of light rain and snowfall to an expanded  

coverage area from 65 S to 65 N (Skofronick-Jackson et al., 2017).   

Since its launch in 2014, the GPM DPR has generated great interest in the community by  

providing not only the quasi-global observations of the precipitation structure, but also the  

fine vertical resolution to supplement the poor vertical resolution of GRs. This enhanced  

vertical resolution is especially important in understanding precipitation microphysics, such  

as precipitation type, hydrometeor identification, and bright band detection (Cannon et al.,  

2017; Casella et al., 2017; Iguchi et al., 2018; Le et al, 2016; Toyoshima et al., 2015). For  

example, Cannon et al. (2017) used the capability of the DPR, vertical pointing GRs, and  

model simulations to identify the melting layer during atmospheric river events in California.  

Furthermore, precipitation estimates by DPR also serve as a reference database for the Level- 

3 global seamless gridded precipitation product – IMERG (Integrated Multi-satellitE  

Retrievals for GPM) (Huffman et al., 2020; Kummerow et al., 2015). Owing to its  

importance, ground validation (GV) of the GPM DPR have been synchronously initiated  

around the world (Matsui et al., 2013; Morris and Schwaller, 2010; Oki et al., 2020;  

Schwaller and Morris, 2011). The GV program involves a set of instruments and software to  

retrieve collocated and coincident measurements - such as reflectivity, particle size  

distribution (PSD), and precipitation estimates – by matching ground and airborne  

instrumentation to SRs (Houze et al., 2017; Tang et al., 2017). The Olympic Mountains  

Experiment (OLYMPEX), for instance, deployed over 20 different instruments on multiple  

aircraft to compare the vertical structure of precipitation in complex terrain (Houze et al.,  

2017). Precipitation rates estimated by DPR were also compared to the Multi-Radar Multi- 

Sensor (MRMS) rain data (Wang et al., 2021; Zhang et al., 2016) over the continental US  

from 2014 to 2015, where the difference was found to be within 5% for the annual rainfall  

amount (Oki et al., 2020). However, comparisons of total rainfall amounts do not reveal the  

capabilities and deficiencies of the GRs and SRs. Numerous studies have focused on  

comparing the raw radar reflectivities from GRs and SRs and have explored possible reasons  

for the observed differences, including calibration procedure and methods of attenuation  

correction (Anagnostou et al., 2001; Biswas et al., 2018; Cao et al., 2013; Chandrasekar et al.,  

2003; Keem et al., 2019; Liao et al., 2022; Masaki et al., 2020; Protat et al., 2022). SRs are  
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used as a valid source to calibrate GRs because of the stability of the DPR calibration over  

time (Protat et al., 2022; Warren et al., 2018; Masaki et al., 2015, 2020).  

Despite the significant collective efforts of the many investigations, few studies have  

attempted to conduct a large-scale comparison of GPM DPR and WSR 88D three- 

dimensional radar reflectivity in the US. A single or even a limited number of sites do not  

provide a comprehensive understanding of the differences between the two systems or how  

they might be jointly used to improve our understanding of microphysical processes.  

Motivated by the need to use the two radar system synergistically, in this study we attempt to  

map all available DPR data since its launch and all available WSR-88D GRs from 2014 to  

2020 to a common grid with the objectives of: 1) exploring whether systematic differences  

exist between the DPR and WSR-88D systems, 2) examining whether those differences are  

consistent for various microphysical processes, 3) determining the primary factors  

responsible for any systematic differences, and, 4) determining the extent to which the latest  

DPR (Version-7) product improves the GR-SR comparisons. In this paper, the primary  

comparisons are made with Version 6 while Version 7 is used to check the degree of  

improvement in the latest version of the DPR algorithm.     

WSR-88D radar  

The WSR-88D radar network, operated at the NOAA/National Weather Service (NWS),  

consists of ~160 operational radars that guidance for nowcasting and warnings (Ansari et al.,  

2018). The radars, which operate with frequency between 2.7 and 3 GHz (S band), are  

routinely calibrated and quality controlled by both on-line and off-line calibrations, with the  

on-line calibration being performed automatically while the system is operating and the off- 

line calibration routinely performed as needed by maintenance technicians at Preventative  

Maintenance Intervals (PMI). The data examined as part of the calibration include system  

noise, system linearity, transmitter power, klystron delay, antenna gain, transmitter  

frequency, and many other variables (Free et al., 2006).   

The WSR-88D system generates three-level products for public access. Level 1 consists  

of raw signal data at each radar site. Level 2 data are processed Level 1 data, consisting of  

range gates that have a gate and azimuthal angle resolution of 250 m and 0.5 deg.,  

respectively. Examples of Level 2 base data include radar base reflectivity (Z), velocity,  

spectrum width, and polarimetric variables differential reflectivity, specific phase, and  
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correlation coefficient. Level 3 products are generated from Level 2 data using advanced  

algorithms to derive hydrometeor types, precipitation estimates, melting layer location and  

height. In contrast to Level 2 data, Level 3 data are averaged into different spatial resolution  

for each variable. In this study, we retrieved the Level 2 base reflectivity and Level 3  

hydrometeor types archived at the Amazon S3 bucket (https://registry.opendata.aws/noaa- 

nexrad/) and Google Cloud Storage (https://cloud.google.com/storage/docs/public- 

datasets/nexrad).  

The Level 3 hydrometeor type product used in this study is generated by a fuzzy-logic  

based Hydrometeor Classification Algorithm (HCA) (https://www.icams- 

portal.gov/publications/fmh/FMH11/fmh11partC.pdf) (Park et al., 2009). The HCA has 12  

classes, defined according to prescribed thresholds by polarimetric variables. These classes  

are biological scatters, ground clutter, ice crystals, dry snow, wet snow, light/moderate rain,  

heavy rain, big drop, graupel, hail mixed with rain, unknown, and no data.  

GPM-DPR  

This study uses the DPR Precipitation Profile product Version 6 (V6 herein) and Version  

7 (V7 herein), released in 2017 and 2022, respectively (Iguchi and Meneghini, 2017, 2021a).  

In this study, the primary assessment is made using the V6 product from 2015 to 2020, while  

V7 is used to examine the relative improvements from V6 (Iguchi, 2020). The DPR consists  

of the Ku-band precipitation radar (KuPR) and Ka-band precipitation radar (KaPR). KuPR  

and KaPR in V6 have three scanning modes: Normal Scan (NS), High-sensitivity Scan (HS),  

and Matched Scan (MS). The NS is solely applied to KuPR (similar to TRMM PR), hence it  

is referred to as KuNS. The HS and MS provide reflectivity estimates based on KaPR, hence  

they are referred to as KaHS and KaMS, respectively. The KuNS scans the full swath, while  

the KaPR (KaMS and KaHS) scans only the inner swath prior to May 2018; after May 2018,  

the KaHS interleaved scan was shifted to the outer swath so that Ka-band data, matched to  

the Ku-band, became available over the full swath (Liao et al., 2021). The range resolution  

for KuNS and KaMS is 0.25 km but oversampled at 0.125 km. The KaHS has a range  

resolution of 0.5 km and a sampling resolution of 0.25 km.   

The DPR V7 data, which were released in 2022, had major updates to the data format to  

reflect the change in the Ka-band scanning. The new data format, called the Full Scan (FS), is  

used for both frequencies with 176 range-bin arrays and 49 angle-bin arrays. The algorithms  
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include several major improvements, including: (1) better sidelobe rejection; (2) application  

of the Dual frequency technique to the full swath of 49 angle bins; and, (3) better rain and  

bright band (BB) detection (Iguchi, 2020, 2021b). To circumvent the ground clutter problem  

at off-nadir incidence angles (Kubota et al., 2018), we choose only the ten cross-track bins  

centered at nadir. This is similar to the approach by Cannon et al. (2017).   

The three-dimensional attenuation-corrected reflectivity (KuNS) in V6/V7  

(zFactorCorrected/zFactorFinal) is used in this study for comparison with S-band GR  

reflectivity. In contrast to the measured reflectivity (zFactorMeasured), the  

zFactorCorrected/zFactorFinal accounts for the attenuation suffered from clouds, atmospheric  

gases, and precipitation (Meneghini et al., 2021). In contrast, the S-band WSR-88D radar  

with its longer wavelength is relatively immune to attenuation from atmospheric signals  

(Biswas and Chandrasekar, 2018). Wen et al. (2011) specifically attributed the bias between  

KuPR and S-band GR to errors in the KuPR attenuation correction. In addition, the BB  

height, BB top height, BB bottom height, and precipitation type, documented as “BBheight”,  

“Bbtop”, “Bbbottom”, “typePrecip”, respectively, are retrieved to break down the differences  

in microphysical processes. The presence of BB in the Classification Module is jointly  

determined by KuPR reflectivity and dual-frequency ratio (DFRm). Readers are referred to  

Iguchi et al. (2018) and Le et al. (2016) for detailed descriptions. The precipitation type  

(stratiform, convective, and others) is dependent upon the presence of BB and reflectivity  

thresholds.  

Volume matching  

Because of different viewing geometries of the DPR and WSR-88D, a direct comparison  

of their data is not feasible without resampling one or both datasets. Common approaches to  

reconcile the two systems differences are: (1) mapping GR variables onto 3D cartesian  

coordinates (Anagnostou et al., 2001; Liao and Meneghini, 2009; Schwaller and Morris,  

2011) and (2) retrieving intersected radar rays called volume-matching (Biswas and  

Chandrasekar, 2018; Wen et al., 2011). In this study, we applied the volume-matching  

method, as illustrated in Fig. 1. One sample bin, highlighted in the red hatched area, is  

overlaid by both DPR and GR radar beams. To determine the bin height (relative to the  

surface), the vertical datum of both systems needs to be standardized. We convert the DPR  

vertical datum – geoid – to the WSR-88D datum (NAVD88 – North America Vertical Datum  

1988). Practically, the GR gate height is calculated by the radar site elevation plus the relative  
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height determined by the elevation angle and distance to the site. For the DPR, we first  

calculate the elevation of each bin using the available flight information (ellipsoidal elevation  

offset, local zenith angle, and bin number) (Iguchi et al., 2018). Next, we convert the height  

at the elliptical geoid to the height at the NAVD88. For variables inside the common bin, we  

average numerical values such as the reflectivity (in linear units), and BB height. For  

categorical data such as hydrometer type, we search for the most dominant type (maximum  

occurrence) within the volume and assign it in our database. Detailed descriptions of the  

volume matching method can be found in Morris and Schwaller (2010).   

  

Fig. 1. Schematic illustration of 3D volume matching for GPM DPR and Ground Radar.  

Event selection  

To accelerate data processing and minimize storage issues, we consider only significant  

precipitation events that appear in the NWS storm database  

(https://www.ncdc.noaa.gov/stormevents/) (Li et al., 2022). Only recorded precipitation  

events that occurred within a range of 25-100 km of the individual radar site are considered;  

this mitigates the GR blind spot near the radar, the non-uniform beam filling issue due to  

beam broadening, and radar wave bending in the stratified atmosphere. In addition, as noted  

above, an event must be located within the 10 DPR angle bins centered around nadir within  

10 minutes of the satellite overpass. With these restrictions, there are in total over two million  

samples suitable for this study. The number of samples per radar site is shown in Fig. 2. This  

result, in principle, reflects the precipitation climatology of the continental US (CONUS),  
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where most of the precipitation falls in the Pacific Northwest and east of the Mississippi. In  

contrast, arid regions like the Southwest have a limited number of samples. A minimum  

sample size of 1,000 is required for further analysis.  

  

Fig. 2. Number of samples (in thousand) collected at each radar site. Dashed circles  

represent the detectable radar range (~300 km).  

Ku-S band reflectivity adjustment  

Several approaches have been discussed in the literature to account for the different  

backscattering characteristics of hydrometeors for S-band (Rayleigh scattering) and Ku-band  

radar (non-Rayleigh scattering) (Cao et al., 2013; Chandrasekar et al., 2003; Liao et al., 2005;  

Liao and Meneghini, 2009a; Wen et al., 2011). These approaches include but are not limited  

to (1) empirical relations that convert the S-band reflectivity to that at Ku-band for rain,  

snow, the melting layer (Cao et al., 2013; Liao et al., 2009b), and (2) microphysical and  

scattering models for different hydrometeors (Wen et al., 2011; Biswas and Chandrasekar,  

2018). The dual-frequency ratio (DFR), defined as the ratio between S-band GR and Ku-band  

DPR, is a function of hydrometeor shape, size, and phase (Cao et al., 2013; Iguchi et al.,  

2018; Liao et al., 2005, 2011). The DFR, as given in Eq. 1, is equal to the difference in  

reflectivity factors, in dB, between the two frequencies.   

𝐷𝐷𝐷𝐷𝐷𝐷 = 10𝑙𝑙𝑙𝑙𝑙𝑙10𝑍𝑍𝐺𝐺𝐺𝐺 − 10𝑙𝑙𝑙𝑙𝑙𝑙10𝑍𝑍𝐷𝐷𝐷𝐷𝐺𝐺                                           (1)  

Liao et al. (2009b) showed that the Ku-band reflectivity factor tends to be larger than the  

S-band reflectivity factor in rain but smaller in snow. Cao et al. (2013) later extended this  
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relation to the melting layer, which is often characterized by the BB in radar data, by fitting a  

polynomial function. In this study, we utilize the relations established by Cao et al. (2013) to  

account for the reflectivity differences for rain, snow, hail, and the melting layer. A generic  

equation is shown in Eq. 2, where the DFR is expressed as a fourth-order polynomial  

function of the S-band GR reflectivity. The empirical parameters 𝑎𝑎0 − 𝑎𝑎4 can be found in  

Cao et al. (2013). The 𝑎𝑎0 − 𝑎𝑎4 parameters are variable with different hydrometeors, i.e., rain,  

dry snow, dry hail, melting snow, and melting hail.   

𝐷𝐷𝐷𝐷𝐷𝐷 = 𝑎𝑎0𝑍𝑍𝐷𝐷𝐷𝐷𝐷𝐷
0 + 𝑎𝑎1𝑍𝑍𝐷𝐷𝐷𝐷𝐷𝐷

1 + 𝑎𝑎2𝑍𝑍𝐷𝐷𝐷𝐷𝐷𝐷
2 + 𝑎𝑎3𝑍𝑍𝐷𝐷𝐷𝐷𝐷𝐷

3 + 𝑎𝑎4𝑍𝑍𝐷𝐷𝐷𝐷𝐷𝐷
4                           (2)  

Note that all the comparisons in our results were done after adjusting the reflectivity  

differences.  

 We use three metrics throughout this study to represent the differences of reflectivity  

between DPR and GR: bias, Root Mean Square Difference (RMSD), and Spearman  

Correlation Coefficient (CC) as their formulas shown in Eq.3-5.  

𝑏𝑏𝑏𝑏𝑎𝑎𝑏𝑏 = ∑ (𝑍𝑍𝐷𝐷𝐷𝐷𝐷𝐷−𝑍𝑍𝐺𝐺𝐷𝐷)𝑛𝑛
𝑖𝑖=1

𝑛𝑛                                                               (3)  

𝐷𝐷𝑅𝑅𝑅𝑅𝐷𝐷 = √1
𝑛𝑛 ∑ (𝑍𝑍𝐷𝐷𝐷𝐷𝐷𝐷 − 𝑍𝑍𝐺𝐺𝐷𝐷)2𝑛𝑛

𝑖𝑖=1                                               (4)  

𝐶𝐶𝐶𝐶 = 𝐶𝐶𝐶𝐶𝐶𝐶(R(𝑍𝑍𝐺𝐺𝐷𝐷),R (𝑍𝑍𝐷𝐷𝐷𝐷𝐷𝐷))
𝜎𝜎(𝑍𝑍𝐺𝐺𝐷𝐷)𝜎𝜎(𝑍𝑍𝐷𝐷𝐷𝐷𝐷𝐷)

,                                                          (5)  

where n is the total number of sample sizes, R(GR) is the rank of GR, and R(DPR) is the  

rank of DPR.  

Results  

Systematic view of reflectivity  

The volume matched reflectivities are sampled at each WSR-88D radar site, and the mean  

differences are illustrated in Fig. 3. Each radar site indicates a positive bias (Z_DPR> Z_GR)  

across the CONUS, indicating a consistent and systematic positive difference between the  

DPR and WSR-88D systems. The average reflectivity difference from the 136 radar sites is  

2.4 dB, consistent with the results reported by Biswas and Chandrasekar (2018) in which the  

differences were found to be between 2 and 3 dB at five GR sites. They attributed the  

difference to the non-Rayleigh scattering evident in Ku-band DPR wavelength. Keem et al.  

(2019) reported a 2.27 dB difference at three radar locations in Iowa. They explained that the  

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 08/02/23 02:12 PM UTC



11
Accepted for publication in Bulletin of the American Meteorological Society. DOI 10.1175/BAMS-D-22-0127.1.

difference was related to GR wet radome attenuation and beam blockage. In other regions,  

Warren et al. (2018) found an average 4.0 dB difference between three Australian GRs and  

DPR, in contrast to 0.1 dB difference for TRMM PR. D’Adderio et al. (2021) recently  

reported a positive bias ranging from 2.19 dB to 5.57 dB for the three C-band radars in Italy.  

Despite the variability in the results, almost all studies indicate a significant positive  

difference between the DPR V6 and GR.  

  

Fig. 3. Spatial map of reflectivity differences (DPR minus GR) in dB at WSR-88D site.  

Figure 4 depicts the grouped reflectivity differences for 136 WSR-88D sites. Overall, the  

majority of the GRs (77.2%), as depicted by the cyan color in Fig. 4, have absolute  

differences of less than 3 dB, indicating “good” agreement. Those GRs are mainly located in  

the central US, Southeast, and East Coast. Around 19.8% of the GRs fall into the second  

category (difference of 3-5 dB), scattered over the CONUS. Only four radars have severe  

differences (>5 dB), all located in the southern California. The limited sample size for these  

radars (as shown in Fig. 2) is a possible reason for the large deviations. In general, radars in  

mountainous regions such as the Rockies disagree with DPR more, partly due to beam  

blockage that can result in a severe reduction of GR reflectivity values.  

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 08/02/23 02:12 PM UTC



13
Accepted for publication in Bulletin of the American Meteorological Society. DOI 10.1175/BAMS-D-22-0127.1.

12
Accepted for publication in Bulletin of the American Meteorological Society. DOI 10.1175/BAMS-D-22-0127.1.

  

Fig. 4. Reflectivity differences categorized at three bins: 0-3, 3-5, and 5-9 dB. Figure 

shows (a) scatter plot of DPR reflectivity and GR reflectivity at 140 WSR-88D radar 

locations, and (b) map of WSR-88D locations with color-coded category. Dots are color-

coded by category.  

Aggregated by hydrometeor types 

The effective radar reflectivity is determined by the combination of the PSD and the 

backscattering cross section of the hydrometeors (Chandrasekar et al., 2003; Liao et al., 2009; 

Wen et al., 2011). We group reflectivity values with respect to eight major hydrometeor 

types, as shown in Fig. 5. Although the correlation is as high as 0.86 for all types combined, a 

bias is also obvious (+1.98 dB) with the bulk of the samples above and parallel to the 1:1 

line. Of these types, light/moderate precipitation and big drops have high positive biases of 

1.94 and 1.86 dB, respectively. Solid precipitation, i.e., dry/wet snow and graupel, have a 

higher positive bias, when compared to liquid precipitation, ranging from 1.97 to 3.64 dB. 

This cannot be explained by the difference in the backscattering cross sections at different 

wavelength nor by signal attenuation (Wen et al., 2011). We suspect the positive bias is 

related to the different calibration procedures used for the two radar systems. One typical 

example is in ice crystal or dry snow regions where the DPR signal at the storm top is 

relatively attenuation-free, implying that calibration is the main sources of the difference 

(Liao and Meneghini, 2009). On the other hand, heavy rain and hail with rain exhibit negative 

biases (-0.31 and -0.33 dB, respectively), which might be caused by under-correction of 

attenuation in heavy rain and hail counteracting the calibration differences. 
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Fig. 5. Reflectivity comparisons by different hydrometeor types at all WSR-88D sites.  

Comparisons by precipitation types  

Figure 6 depicts the comparisons categorized by different precipitation types as  

determined by the DPR. Overall, the results grouped by both GR (Fig. 5) and DPR (Fig. 6)  

depict positive biases of the DPR relative to the GR. It also shows that the reflectivity for the  

two radars, which is centered around the 1:1 line, aligns reasonably well in convective  

precipitation. The positive bias is thus reduced to be within 1.5 dB. Nevertheless, the  

reflectivity in stratiform precipitation starts to deviate, with a positive bias of 1.3 dB. More  

importantly, the difference becomes greater when the reflectivity values estimated by the GR  

are taken to be larger than 30 dB, as highlighted in the red box (Fig. 6). To further analyze  

this example, we separate the stratiform precipitation relative to its location with respect to  

the BB height as shown in Fig. 7.   
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Above the BB, there is a positive bias (1.19 dB) that can be attributed to calibration  

differences. Within the BB, the bias (1.14 dB) is the smallest among all of the cases, yet the  

RMSD is the largest. The intrinsic positive bias is possibly compensated by under-corrected  

attenuation within the BB. Below the BB, the bias increases to 1.6 dB, and samples deviating  

from the 1:1 line show again the elevated tail highlighted in the red box (Fig. 7), which  

correlates with the large bias in light/moderate rain in Fig. 5e. Despite a positive bias, the CC  

(0.89) and RMSD (3.37 dB) below the BB are the best among the metrics in the three  

regions.  

  

Fig. 6. Reflectivity comparisons by precipitation types for: (a) stratiform precipitation; (b)  

convective precipitation; (c) others. The red rectangle highlights the region where the high- 

density samples start to deviate from the 1:1 line.  

  

Fig. 7. Similar to Fig. 6, but for reflectivity comparisons by height relative to the bright  

band (BB). (a) beam height above the BB; (b) beam height within the BB; (c) beam height  

below the BB.  
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One way to check the accuracy of the DPR attenuation correction is to compare vertical  

profiles of reflectivity between DPR and GR. If the magnitude of differences between DPR  

and GR increases/decreases monotonically with the DPR range, it would suggest the DPR  

under/over-corrects attenuation. We regrouped the reflectivity values at bins with height  

above the ground from 1500 to 5700 m in intervals of 200 m. The median value and  

uncertainty range (from 25th percentile to 75th percentile) are shown from each bin as shown  

in Fig. 8. Note that since the results integrate and smooth all events that have varying BB  

heights, a typical stratiform profile is not obvious in this case.  

We find a constant shift (~3 dB) between DPR and GR reflectivity from top to bottom for  

stratiform precipitation, indicating that attenuation correction of the DPR is reasonable. The  

reflectivity variability range for DPR begins to narrow at the top (5 dB) yet increases to  

around 10 dB at the bottom. The range of reflectivity in GR is narrower than that of DPR,  

despite an increase in the middle which is possibly related to melting processes. For  

convective precipitation, however, the bias is around 3 dB at the top and 1 dB at the bottom  

height. This suggests a slight under-correction (~2 dB) of the DPR attenuation for convective  

precipitation. The reflectivity range, though much greater than stratiform precipitation as  

expected, follows the same pattern – increasing from the top to the bottom. Again, DPR has a  

larger reflectivity range than GR, which is probably related to the coarse vertical resolution of  

GR and signal noise of DPR such as sidelobe, ground clutter, or atmospheric attenuation as  

signals penetrate deep into the storm.  
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Fig. 8. Vertical profile of reflectivity for DPR and GR in stratiform rain and convective  

rain. The shaded color represents uncertainty range, quantified between 25th percentile and  

75th percentile.  

Comparisons to the NASA Validation Network data  

To confirm our matching methods, we compared our matched results with the NASA  

Validation Network (VN) data that is publicly accessible (Gatlin et al., 2020; Keem et al.,  

2019; Schwaller and Morris, 2011). We processed volume-matched VN dataset from DPR  

and GR from 2014 – 2021 at all matched WSR-88D sites (only in the eastern US). To make a  

fair comparison, we applied the same reflectivity conversion from Ku band to S band, as  

mentioned in Section 2.5. In contrast to our matching method, VN has stringent data selection  

protocols. For instance, radar data with non-uniform beam filling greater than 10% are  

ignored (Schwaller and Morris, 2011). In our case, we select events based on the storm  

reports as mentioned in Section 2.4. In the VN algorithm the radar variables are sampled onto  

a 3D cartesian coordinates, while we use a direct volume matching method.   

Comparisons of reflectivity from all available sites show positive bias (DPR > GR), with  

the bias being 1.91 dB for VN data and 2.01 dB for our data. From Fig. 4b, we see that most  
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of these radar sites have relatively “good” agreement with DPR, with the biases below 3 dB.  

However, other radar sites in the western US are not included in the current VN data.  

  

Fig. 9. Map of reflectivity bias for (a) NASA Network Validation data (b) our method.  

Possible reasons for the DPR and GR differences  

In this section, we discuss the most probable driving factors that are responsible for the  

DPR-GR differences. First, the primary factor is believed to be calibration differences as, for  

example, seen in Fig. 5, where a positive bias is prominent in the ice regions that are  

attenuation-free. The DPR and WSR-88D radars adopt different calibration protocols. The  

DPR has implemented the so called “internal” and “external” calibration to ensure the  

received signal is correctly converted to reflectivity factor (Masaki et al., 2020; Oki et al.,  

2020). The internal calibration ensures that power losses from the transmitter to receiver are  

accounted for, and the external calibration, considering the DPR as a whole system, calibrates  

signals from ground to the DPR, also called absolute calibration. The internal calibration  

determines the slope of the transfer function while the external calibration determines the  

intercept (Masaki et al., 2020). The WSR-88D radars routinely conduct coherent calibration  

procedures at each radar site, adjusting time-varying system noise, reflectivity correction  

factors (on-line calibration), and slowly varying parameters (offline calibration) (Free et al.,  

2006). Meanwhile, external calibration is conducted using either a self-consistency test  

(Ryzhkov et al., 2005) or by comparisons to ground-based instruments (e.g., disdrometers) on  

a regular basis. We found a 1.9 dB shift in the regions above the BB. We suspect that there is  

a disagreement of the intercept in the transfer function, which is determined by external  

calibration for both systems.   
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Second, the attenuation correction to the DPR Ku-band measured reflectivity plays a  

central role in the reflectivity differences. The latest Surface Reference Technique (SRT) is  

applied as a primary method in path-integrated attenuation (Meneghini et al., 2021).  

Although the SRT itself is independent of precipitation phase, the allocation of gate corrected  

reflectivity entails phase information, which is classified based on DFR. Yet, without  

attenuation-corrected reflectivity, it is difficult to compute DFR and classify precipitation  

phase correctly (Iguchi et al., 2018). Although this concern is less severe in stratiform rain  

where precipitation phase can be inferred given the location of bright band, the issue is more  

problematic in convective rain as is the NUBF effect that influences all the attenuation  

estimates. Another method of attenuation correction – the Hitschfield-Bordan method –  

works well for light rains and small-to-moderate attenuation, yet it still suffers from the  

phase-state problem in convective rain. In summary, the status quo is that the current  

algorithm does not handle the attenuation correction issue to the degree that would be  

desired, and there are ongoing efforts to improve this.   

Third, differences in radar scanning and radar characteristics hinder the match between  

the two. Problems such as NUBF depend on the dimension of the volume chosen to resample  

radar rays. Particularly for GRs, poor vertical resolution and beam broadening as the distance  

from the radar increases worsen the NUBF effect, which is further exacerbated in complex  

terrains (Ryzhkov, 2007). Recent studies have been seeking data-driven approaches to  

mitigate the beam blockage effect in occlusive areas, which have potential to overcome this  

problem (Yin et al., 2021).  

In this study, we provide the first evaluation of the latest version of the DPR algorithm.  

Similar plots to Figs. 3-8 are shown in the Supplementary plots Figs. S1-6. We also  

summarized the improvements of bias in Table 1. A continental map shown in Fig. S1  

manifests a good overall improvement showing that the systematic bias between the DPR and  

GR is reduced in V7.  In particular, the average reflectivity difference is reduced from 2.4 dB  

(V6) to 1.0 dB (V7), where in all cases the DPR exceeds the GR. The number of radar sites  

that have reflectivity differences within 3 dB has increased from 105 (V6) to 131 (V7), an  

increase of 24.8% (Fig. S2). The overall bias by hydrometeors has decreased from 1.98 dB  

(V6) to 1.37 dB (V7), and can be attributed to an improvement in dry snow DPR estimates  

(RMSD – 4.1 vs. 3.9 dB; bias – 2.23 vs. 1.01 dB) and wet snow (RMSD – 5.3 vs. 3.7 dB;  

bias – 3.64 vs. 1.45 dB) (Fig. S3). However, persistent differences in light/moderate rains are  
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present in V7, with 2.01 dB bias comparable to V6 (1.94 dB). Biases with regard to rain type 

have been decreased in V7 (Fig. S4), and also for heights above BB (Fig. S5). For heights 

within BB and below BB, there are small increases in biases. The vertical profile shown in 

Fig. S6 now has a narrower gap (3 dB for V6 vs. 0.8 dB for V7) and larger overlapping areas. 

Overall, the improvements from V6 to V7 are substantial and constitute a closer match 

between GPM DPR and WSR-88D GR. The improvements are primarily ascribed to (1) 

advances in path-integrated attenuation (PIA) correction, (2) adoption of an improved 

sidelobe clutter correction scheme (Kanermaru et al., 2021; Seto et al., 2022), and (3) 

changes in the DPR solver module including use of a range-adjustable parameter (epsilon).  

The presence of soil moisture can modify the surface backscattering cross section and 

introduce errors in the estimate of path attenuation. While there is no adjustment in V6, in V7 

(Iguchi et al., 2021b; Seto et al., 2022), an account of this effect tends to increase the rain rate 

estimates over land. Second, the sidelobe clutter correction is improved, especially when a 

BB is present near the surface. This improved filtering decreases the bias. Third, the updated 

epsilon parameter affects the Drop Size Distribution, and thus the attenuation. Despite overall 

improvement, there is still a significant difference, when considering that a difference of 1 dB 

in radar reflectivity can produce a change of 15% in rain rates (Nakamura, 2021).  

Table 1. Summary of bias between GPM DPR Version 6 and Version 7 (numbers with bolded 

format indicate better performance).  

Difference according to aggregation levels V6 V7 

Continental average DPR-GR difference (dB) 2.4 1.0 

# Radar sites within 3 dB differences 105 131 

Hydrometeor types 

Overall 1.98 1.37 

Ice crystals 1.36 1.15 

Dry snow 2.23 1.01 

Wet snow 3.64 1.45 

Light/Moderate rain 1.94 2.01 
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Heavy rain -0.31 0.14 

Big drops 1.86 1.69 

Graupel 1.97 0.69 

Hail with rain -0.33 -0.53 

Precipitation type 

Stratiform 1.31 1.24 

Convective 1.42 1.12 

Others 0.56 0.07 

Relative to Bright Band (BB) 

Above 1.19 0.85 

Within BB 1.14 1.42 

Below 1.60 1.78 

  

Concluding remarks and recommendations  

Ground-based radars in synergy with spaceborne radars can improve our understanding of  

cloud and precipitation microphysics. Caution should be taken when using the both GPM- 

DPR and WSR-88D radars, however, because systematic differences do exist. In this study,  

we quantify the reflectivity differences from a systematic overview of 136 WSR-88D radars.  

We find that, on average, the reflectivities from the DPR are greater than those of the WSR- 

88D radars by 2.4 dB. At a majority (>77%) of the sites, the difference is within a 3 dB.  

Poorly matched DPR-GRs generally reside either over complex terrain or at the southern  

California sites, where the sample size is small. An analysis of the results suggests that the  

discrepancies originate primarily from three sources: (1) different calibration protocols, (2)  

errors in the DPR attenuation correction, and (3) imperfect matching methods due to  

differences in the spaceborne and ground-based radar geometries and beamwidths. NUBF  

effects further exacerbate the attenuation correction and volume matching problems. In the  

newer version V7, the DPR-GR reflectivity bias is reduced from 2.4 dB (V6) to 1.0 dB (V7).  

This improvement is the result of a better sidelobe rejection method and better attenuation  

correction procedures implemented in V7. Closer matches between GR and DPR in wet and  

dry snow are found in V7, yet differences in light/moderate rains persist.  
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This study aims to highlight the systematic difference between DPR and GR as the  

interest grows in using a multi-sensor approach to probe clouds and precipitation  

microphysics. It does not intend to judge which of the two systems is more accurate because  

each inherits its own strengths and deficiencies. Any future investigation of this topic would  

benefit from incorporating more radars from around the world. Moreover, the consistency of  

the Ku-band SR and S-band GR data over time could be addressed by considering TRMM,  

GPM and WSR-88D data sets over the last two decades. Opportunistic sensors such as  

CloudSat, RainCube, EarthCARE (to be launched in 2022) will provide more confidence in  

this task. The Triple Collation method can be used to examine the similarity and difference  

among the three independent products without assuming ground truth (Li et al., 2020).  
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